DEPARTMENT OF ANTHROPOLOGY

C-12 Cooper Hall
(585) 395-2682

Chair and Associate Professor: Charles L. Edwards, PhD, SUNY Buffalo; Professor: Douglas A. Feldman, PhD, SUNY Stony Brook; Assistant Professors: Pilapa Esara, PhD, Brown University; Neal Keating, PhD, SUNY Albany.

While the Department of Anthropology does not have a graduate degree program, its graduate course offerings may be applied as requirements and/or electives in degree programs as determined through the advisement process.

ANTHROPOLOGY COURSES

ANT 501 Native American Art and Culture (A).
Provides a survey of Native-American visual arts (north of Mexico) viewed within the context of Native-American cultures and through the framework of anthropology. Considers Native-American arts by culture area: their roots, traditional expressions, changes with European contact, and contemporary expressions. Relies heavily upon the use of audiovisual material. 3 Cr. Spring.

ANT 503 Biography and Life History (A).
Cross-listed as WMS 503. Studies the expression of life stories, their collection and recording, and their presentation in written format. Includes the evolution of the life history in anthropology and oral history; genres of life history; gender and life stories; the life history as an expression of the self vs. the life history as a window on culture; and the limitations of life history research. 3 Cr.

ANT 505 Applied Anthropology (A).
Examines applied anthropology, a subfield of anthropology that uses anthropological perspectives to analyze and provide solutions for societal problems in the US and globally. Using case studies and hands-on projects, explores the theoretical, practical and ethical implications of applied anthropology. Primarily for students who will ultimately need to address a variety of applied problems in multicultural or nonwestern settings. 3 Cr.

ANT 540 Historical Archaeology (A).
A survey of the field of American historical archaeology. Examines the rationale, methods and theories for the archaeological investigation of the recent past. Explores the insights gained on particular social issues, such as class, ethnicity and slavery, where historical archaeology has played a role. 3 Cr.

ANT 541 Archaeological Analysis (A).
Presents contemporary laboratory methods used to identify patterns in artifacts and field data recovered from archaeological site surveys and excavations. Allows students to analyze, interpret, manage, and conserve artifacts and field data. 3 Cr.

ANT 542 Field Methods in Archaeology (A).
As a field-based course, introduces students to the methods used by archaeologists to collect data in the field. Allows students to participate in an archaeological dig at an actual site off-campus, and perform all the duties involved in that work. Includes activities such as survey, mapping, testing, excavation, documenting and recording finds, and processing artifacts in the lab. 1-6 Cr.

ANT 550 Primitive Behavior.
Explores the evolution, behavior, and adaptations of living non-human primates, with particular emphasis on (1) field studies of free ranging primates; (2) social and protocultural behavior in primates; and (3) relevance of primates for understanding the roots of animal behavior in general and human behavior in specific. 3 Cr.

ANT 552 Ancient Disease and Paleopathology (A).
Recognizes that: 1) human history and prehistory have been shaped in many ways by disease processes that leave their mark in the skeletal, archaeological and historical records; and 2) the skeletal marks of disease and injury provide clues to changing environmental, social, political and other cultural realities affecting the evolution of human society and culture. Covers methods used by paleopathologists to reconstruct health and disease processes in the past. 3 Cr.

ANT 553 Scientific Study of Mummies (A).
Focuses on the scientific methods and findings associated with mummies, which include parts of completely preserved human remains in which preservation is the result of natural as well as cultural processes. Explores how mummies found in a number of temporal, cultural and environmental contexts, including modern forensic settings, provide a wealth of data on sociocultural processes, environmental processes, the evolution of pathological conditions, and historical trends. 3 Cr.

ANT 564 Historic Preservation and Archaeology (A).
Recognizes that archaeological sites, old
buildings, places of religious importance, and landscapes are all “cultural resources.” Examines the development of historic preservation ideas, the laws structuring “historic resources.” Also examines the development of historic preservation ideas, the laws structuring historic preservation, and how this structure affects archaeological work in the United States. Practical aspects include an examination of local preservation initiatives, the mechanics of National Register nominations, and public presentation and outreach. 3 Cr.

ANT 590 Topics in Anthropology (A). As an advanced course, addresses current topics, issues, controversies, etc. of anthropological significance. Specific topics vary from semester to semester and may address issues in physical anthropology, archaeology, cultural anthropology or applied/developmental anthropology. Descriptions of specific topics courses offered in any particular semester may be obtained through the department. May be taken more than once for credit if topics differ. 3 Cr.

ANT 599 Independent Study in Anthropology (A). Established in consultation between student and instructor. 1-6 Cr. By Arrangement.

ANT 699 Independent Study in Anthropology (A). Established in consultation between student and instructor. 1-6 Cr. By Arrangement.

BOARD OF STUDY FOR THE TEACHING OF SCIENCE AND MATHEMATICS

(585) 395-5585

Coordinator and Instructor, Chemistry: Dawn M. Lee, MS, Rochester Institute of Technology; Members: Distinguished Service Professor, Education and Human Development: Betsy C. Balzano, PhD, Florida State University; Assistant Professor Emeritus, Education and Human Development: Walter F. Brautigan, PhD, Cornell University; Associate Professor Emeritus, Chemistry: Kenneth D. Schlecht, PhD, University of Iowa.

The Board of Study was created in natural and mathematical sciences to work for the improvement of science and mathematics teaching. Its intent is to supplement departmental efforts and to carry out functions and programs not within the interest of a single department or appropriately administered through one department.

Graduate-level subject-matter courses emphasizing the fundamental principles of the sciences and mathematics are scheduled by the Board of Study. Advisement services and courses specifically designed for teachers at the elementary and secondary school levels are available on a regular basis. Acceptability of natural science courses toward a graduate degree is determined in consultation with the student’s major advisor.

NATURAL SCIENCE COURSES

NAS 501 Computational Methods for Teachers I (A). Prerequisite: Instructor's permission. Enables teachers and teacher candidates in mathematical, physical, life and earth sciences to learn computational tools, advanced graphing calculators, laptop computers, CD-and Web-based tools. Involves computational science as a process in solving real-world problems in sciences. Introduces students to technology tools (such as graphing calculators), math modeling tools (such as Excel, STELLA, and Geometer’s Sketchpad), agent-based modeling tools (such as AGENT SHEETS), science modeling tools (such as Interactive Physics). Includes a section on New York state K-12 standards in math, science and technology. 3 Cr.

NAS 525 Peer-Led Workshops for College Chemistry CHM 205/206 (A). Provides training in peer leading workshop chemistry session averaging 1 hour per week before leading small groups of CHM 205/206 students in solving problems for 2 hours per week. Training includes pedagogical aspects, group dynamics and chemistry content. Includes how to develop workshop modules. Instructor's permission required. 1 Cr.

NAS 586 Laboratory Science Safety (A). Covers safe lab teaching practices for science teachers with no prior safety instruction. Emphasizes hazard potential in biology, chemistry, earth science/geology, and physics, especially when working with chemicals. Includes three hours of lecture/lab per week. 3 Cr.