All Biology Courses

Main Page Content

Undergraduate Courses

BIO 111 Principles of Biology (A,L). For non-majors; course is not applicable to the major in biological sciences; a prerequisite for BIO 321-322. Through lecture/discussions and laboratory activities, examines the structure and function of living organisms extending from the cellular level to the Earth’s biosphere as a system. 4 Cr. Every Semester.

BIO 201 Biology I (A,L). For Biology and Med Tech Majors: Provides an integrated exploration of the fundamentals of biology as a science, the nature and origin of life, biological chemistry, cell biology, and genetics. Draws upon plants, animals and microbes to illustrate structure and function relationships. 4 Cr. Every Semester.

BIO 202 Biology II (A,L). Prerequisite: BIO 201. Focuses on organismal biology by taking an evolutionary approach to examine how animals and plants adapt to the environment, to study structure and functions by examining both animal and plant physiology and to integrate this knowledge with laboratories that run parallel with the lectures. 4 Cr. Every Semester.

BIO 221 Survey of Anatomy and Physiology (A,L). Credit not applicable to the major in biology. A systems overview of human anatomy and physiology, with emphasis on structure and function of skeletal, muscular, nervous, cardiovascular and respiratory systems. Presents development and integration of these units as a basis for understanding the anatomical and physiological aspects of humans at rest and during activity. Includes a weekly laboratory session. 4 Cr. Every Semester.

BIO 281 Elements of Human Biology (A,N). Credit not applicable to the major in biology. Provides an introduction for non-majors to the human organism-structure, physiology, metabolism, behavior, genetics, evolution and ecological relationships. Addresses important issues in health and human disease as well as current societal and ethical issues in readings, lectures and classroom discussions. 3 Cr.

BIO 285 Biology of Aging (A,N,Y). Credit not applicable to the major in biology. Covers mechanisms of aging at the physiological, cellular, and molecular levels. Examines physiological changes associated with human aging. Discusses aging as a disease and age-related diseases. Studies of aging in model organisms are used to provide insights into mechanisms of human aging. Covers treatments of aging, both bogus and bona fide that claim to decrease aging and increase longevity. While this course covers the biology of aging, various social, political, and ethical issues concerning aging will be covered. 3 Cr.

BIO 290 Introduction to Honors Research (A). Provides an introduction to scientific research laboratory and the scientific method. Cellular and molecular techniques will be introduced in the context of a developing thesis proposal. Six hours per week is to be arranged with the faculty mentor. Only students with fewer than 54 college credits may register. 2 Cr. Every Semester.

BIO 302 Genetics (A). (Prerequisites BIO 201, BIO 202 and CHM 205, CHM 206). Recommended corequisite: CHM 305. A study of the principles and mechanisms of heredity, and the gene as the basis of inherited variation. Course topics include Mendelian transmission genetics, as well as molecular aspects of gene replication and gene expression. Covers selected topics in genetic regulation, mutation and repair, bacterial and eukaryotic gene mapping, genetic and recombinant DNA techniques as well as population genetics. Laboratory experiments illustrate the above principles. Experiments include basic techniques in DNA isolation and restriction enzyme analysis, gene and chromosome segregation, gene expression, mutagenesis and repair, DNA fingerprinting, and bioinformatics. 4 Cr. Fall.

BIO 303 Ecology (A,Y). Cross-listed as ENV 303. Prerequisites: BIO 111 or BIO 202. Ecology addresses interrelationships among organisms and the physical environment. Considers energy flow, nutrient cycling, population and community dynamics, principles of animal behavior, and natural history in lecture, laboratory and field study. 4 Cr.

BIO 310 Biological Chemistry (A). (Prerequisite A grade of C or better in both BIO201 or BIO202 for BIO and Med Tech Majors, and CHM206). A one-semester introduction to bioshemistry concepts. Engages students in the chemical foundation of life, bioenergetics, enzyme regulation and kinetics, and cellular metabolism. Closed to students who have taken CHM468. 3cr Spring 3 Cr. Spring.

BIO 311 Biological Chemistry Laboratory (A). (Prerequisite or Corequisite BIO310). Illustrates biological chemistry concepts using hands-on examples. Students will work independently and in teams. Activities may include modules on making solutions, titrations and pH, generating standard curves, protein, determination assays, gel electrophoresis, mammalian cell culture, fluorescence microscopy and Michaelis-Menten kinetics in a three-hour lab per week. 1 Cr. Every Semester.

BIO 315 Cell Biology (A). Prerequisites: BIO 201, BIO 202, CHM 205, and CHM 206. Covers cellular structures and functions and the interrelationship between them. Topics include cell components, energy and metabolism, protein structure and function, membranes and transport, cell signaling, cytoskeleton, cell division cycle, and stem cells. 3 Cr. Fall.

BIO 321 Anatomy and Physiology I (A). Prerequisites: BIO 111 or BIO 201 or BIO 221. Studies the structure and function of cells, tissues and organs with examples drawn from the human body. Introduces students to the anatomy and physiology of the skeletal, muscular, nervous, endocrine and integumentary systems of the body through lectures and laboratories. (BIO 321 and 322 are recommended to be taken in sequence). 4 Cr. Fall.

BIO 322 Anatomy and Physiology II (A). (Prerequisites: BIO 111 or BIO 201 or BIO 221 or BIO 321). Introduces students to the anatomy and physiology of cardiovascular, circulatory, urinary, respiratory, digestive, immunological, and reproductive systems of the human body through lectures and laboratories. {BIO 321 and 322 are recommended to be taken in sequence}. 4 Cr. Spring.

BIO 323 Microbiology (A). Prerequisites: BIO 111 or BIO 201, AND CHM 205 or CHM 260. Provides lectures concerned with the structure, function, diversity, and control of microorganisms, including metabolism, growth and regulation, microbial genetics, disease, and immunology. Provides lab experiences in techniques of pure culture, cultivation, enumeration, isolation and characterization of microorganisms. 4 Cr. Fall.

BIO 330 Frontiers in Public Health (A,I). Team taught interdisciplinary course offered by faculty in biology, public health, political science and communication. Students will acquire knowledge in science, rhetoric, ethics and public policy such that they are able to make informed choices as citizens in an increasingly technological world. A current public policy (eg. vaccines, stem cells, GMO’S) will serve as a vehicle for students to learn, integrate and apply acquired knowledge. 3 Cr.

BIO 333 Contemporary Issues in Life Science (A,I). Credit not applicable to the major in biological sciences. What is life? When does human life begin? How do genes control life processes? Is it natural/ ethical to alter the genetic makeup of species, including humans? What drives pharmaceutical companies and drug development? Explores controversial issues raised by modern biotechnology. Reviews background information for identifying, understanding, and analyzing critical issues facing the life sciences. 3 Cr. Fall.

BIO 404 Developmental Biology (A). Prerequisites BIO 301 and BIO 302. Provides a comprehensive one-semester survey of the mechanisms of animal development through lectures and laboratory exercises. Lectures cover historical approaches, contemporary research, and links between evolution and development. Laboratories examine embryonic development of sea urchin, chick, and fruit fly. 4 Cr. Fall.

BIO 407 Advanced Cell Biology (A). Prerequisites: BIO301 and BIO302. An advanced course in cell biology. In depth exploration of cell structure and function and the interrelationship between them including biological membranes, molecular transport, vesicle trafficking and secretion, cell division, cytoskeleton, receptors and cell signaling, extracellular matrix and the organization of tissues. 3 Credits. Fall. 3 Cr. Fall.

BIO 411 Evolution (A). Prerequisite: BIO 302. Commences with a review of philosophical and factual basis of evolutionary biology. Examines the physiochemical background for the evolution of life, mechanisms of evolution, population genetics, phylogeny, speciation, and consequences of the evolution of populations of living organisms. 3 Cr. Fall.

BIO 413 How Plants Work (A). Prerequisites: BIO301. Fundamentals of plant growth, development, structure, and response to the environment. Covers all aspects of the mechanisms plant structure and function, especially those features that differentiate plants from other organisms. An integrated lab focuses on key features of plants and their physiology. 3 Cr. Fall. 3 Cr. Fall.

BIO 414 Immunology (A). Prerequisite or corequisite: BIO 301. Designed to present the basic principles and concepts of immunology. Students will be able to understand and describe topics such as organization of the immune system, evolution of the immune system, cellular and molecular mechanisms used by the immune system to protect organisms from disease, antibodies and antibody diversity, antigens and antigen-antibody interactions, major histocompatibility complex function, Band T cell development and differentiation, development and survival of lymphocytes, cytokines and their role in regulation of immune responses, the role of the complement system and cell mediated effector response, vaccination, cancer immunology, mechanisms for rejection of transplanted tissue, autoimmunity. 3 Cr. Spring.

BIO 415 Molecular Biology (A). (Prerequisites BIO 301, BIO 302 and CHM 305). Covers the biosynthesis and function of macromolecules, especially nucleic acids. Includes topics in regulation, molecular virology, DNA mutation and transposition, and DNA repair. 3 Cr. Spring.

BIO 417 Recombinant DNA Laboratory (A). Prerequisites: BIO 302 and CHM 305. Covers laboratory methods involved in the construction of a genomic DNA library and the creation of recombinant DNA molecules. Standard molecular biology techniques such as plasmid and genomic DNA isolation, bacterial growth and selection techniques, gene isolation and detection, DNA ligation, restriction analysis, bioinformatics, and PCR methods will be utilized. 3 Cr.

BIO 420 Mechanisms of Aging (A). Prerequisites BIO 301 and BIO 302. Covers mechanisms of aging at the physiological, cellular and molecular levels. Discusses aging as a disease that can be treated and prevented. Studies of aging in model organisms are used to provide insights into mechanisms of human aging. The evolution of aging mechanisms also is discussed. 3 Cr. Fall.

BIO 422 Animal Physiology and Histology (A). (Prerequisites: BIO 301 and BIO 302). Essential physiological concepts will be used to further the understanding of how the human body functions. Emphasis is placed on providing an integrated explanation of the histology, regulation and function of key organ systems such as nervous, circulatory, respiratory, gastrointestinal, endocrine and urinary systems. Includes a lab illustrating concepts covered in lecture. Recommended for Biology majors. 4 Cr. Spring.

BIO 423 General Microbiology (A). Prerequisites: BIO 301 AND BIO302. This course aimed at Biology majors provides lectures concerned with the structure, function, diversity, and control of microorganisms, including metabolism, growth and regulation, microbial genetics, disease, immunology, and microbial ecology. Provides lab experiences in techniques of pure culture, cultivation, enumeration, as well as isolation and characterization of diverse microorganisms such as bacteria, fungi, viruses from various sources such as food, environment, water. 3 Cr. Spring.

BIO 424 Experimental Research (A). Prerequisites: Junior status and instructor's permission. Under the supervision of a faculty member in biology, allows the student to undertake a lab research project in some area of biological science. Establishes the topic and methodology by mutual consent of the student and faculty member. Requires all students enrolled to meet together with the involved faculty once a week to discuss the background, methods and results of their projects. Encourages students to present their results at Scholars Day. May be repeated; a maximum of six credits from a combination of BIO 424, BIO 493, and BIO 499 may be applied toward the major in Biology or Medical Technology. 1-3 Cr. 1-4 Cr.

BIO 426 Recombinant Dna (A). Prerequisite: BIO 302 and CHM 305. Considers theory and techniques in the recombinant DNA field. Includes topics such as cloning vectors, restriction analysis, PCR methods, and expression of cloned genes in both prokaryotes and eukaryotes. Also considers examples and implications of recombinant DNA methodology in plants and agriculture as well as in medicine, human genetics and disease. 3 Cr. Fall.

BIO 430 Immunology Laboratory (A). Course fee: This laboratory is restricted to undergraduate students enrolled in the Medical Technology major. The objective of this course is to provide an introduction to experimental design and basic techniques commonly used in immunology research as well as medical laboratories. The techniques that the students will learn include preparation of cell suspensions from lymphoid organs of mice, detection of activated T cells, enzyme-linked immunosorbent assay (ELISA), immunoprecipitation, SDS-PAGE, western blot, and flow cytometry. 1 Cr. Spring.

BIO 455 Neurophysiology (A). Prerequisites BIO 301, 302 and CHM 206. Introduction to neurophysiology emphasizing cellular and molecular processes occurring at the plasma membrane. Biophysical mechanisms used by neurons to code, process, propagate, and transmit information are examined. Chemical signaling at the neuromuscular junction will be examined in detail. A quantitative description of neuronal function is provided. For example, the effects of ionic gradients on the resting membrane potential of a neuron, the influence on neuronal function, and the effect on the human nervous system is discussed. Current techniques, including electrophysiology and microscopy, will be covered. 3 Cr. Fall.

BIO 456 Systems Physiology (A). An inquiry-based course providing experience in an authentic research project. Student teams will develop a testable hypothesis, design and perform experiments, and prepare a final presentation. Physiological mechanisms will be examined at the molecular and whole animal levels. The primary goal is to develop a hands-on perspective of the biomedical research process. 3 Cr. Fall.

BIO 466 General Endocrinology (A). (Prerequisite BIO 301). Explores the relationship between hormone action at the level of the cell and resulting physiological responses such as the regulation of growth, metabolic and reproductive processes. Mechanism of action at cell and molecular levels is emphasized. The pathophysiology of hormone-based disease is used to illustrate concepts. 3 Cr.

BIO 475 Cancer Biology (A). (Prerequisites BIO 301 and BIO 302). Focuses on the biology of cancer commencing with an epidemiological overview of the major human cancers, followed by a discussion of the major causes, progression, identification, prevention, and treatments of those cancers. Emphasizes the molecular mechanisms behind the development of cancer, as well as those being targeted for pharmacological treatments. Includes a discussion of the latest medical advances. 3 Cr.

BIO 480 Genomes and Proteomes in Biomedicine (A). (Prerequisites BIO 301 and BIO 302). Introduces the knowledge of genomics and proteomics in biomedicine, and the bioinformatic approaches for accessing biological databases/programs and analyzing biological data. The topics include the tree of life, various genomes (from viruses, bacteria, fungi, plants to mammals) and their structure and function, genome sequencing technology and genome assembly, genome annotation and functional annotation, human genome and disease, next-generation sequencing technology and data analysis, phylogenetic analysis, protein structure and proteomics, We will mainly use web-based tools/databases and stand-alone programs with graphical user interface. 3 Cr. Fall.

BIO 481 Medical Technology I (A). Provides training through Rochester General Hospital's School of Medical Technology or Women's Christian Association Hospital School of Medical Technology in Jamestown, NY. Teaches several areas under this name that include: Blood Bank, Biochemistry, Hematology, Microbiology, Urinalysis, Mechanisms of Disease, and Independent Research Projects. For admission into this course, students must contact the department chair or the Coordinator of Medical Technology in Lennon Hall nine months prior to the course. 15 Cr. 15 Cr. Fall.

BIO 482 Medical Technology II (A). Provides training through Rochester General Hospital’s School of Medical Technology or Women's Christian Association Hospital School of Medical Technology in Jamestown, NY. Teaches several areas under this name that include: Blood Bank, Biochemistry, Hematology, Microbiology, Urinalysis, Mechanisms of Disease, and Independent Research Projects. For admission into this course, students must contact the department chair or the Coordinator of Medical Technology in Lennon Hall nine months prior to the course. 15 Cr. 15 Cr. Spring.

BIO 483 Introduction of Bioinformatics (A). Prerequisite: BIO 302. Introduces biologists with computational skills necessary to create and automate tools to analyze biological data. The course is divided into three sub-topics: Linux basics, Python programming, relational databases. A brief review about molecular biology will also be included. 3 Cr. 3 Cr. Spring.

BIO 489 Neurobiology (A). Prerequisites: BIO 301, corequisite: BIO 302. Fosters the understanding that the brain is the basis of our thoughts, feelings, actions and sense of selves. Advances the idea that brain development and synapse formation play a major role in defining who we are. 3 Cr. 3 Cr. Spring.

BIO 491 Biological Sciences Overseas Program (A). Prerequisite: Departmental approval. Requires students to attend classes in the biological sciences and/or related areas at the participating overseas university. 1-15 Cr. 1-15 Cr.

BIO 493 Honors Research (A). Provides an independent research experience for Honors Students in Biology with a faculty member. Up to nine hours per week (3hr/Cr.) is to be arranged with the faculty mentor. Juniors and Seniors only or departmental permission. May be repeated, but only 6 credits can be applied towards the major in Biology. Requires prior approval of the faculty mentor. 1-3 Cr. Every Semester. 1-3 Cr. Every Semester.

BIO 495 Topics in Biology (A). To be defined by the instructor-sponsor in accordance with the specific topic to be covered that semester. Additional information may be obtained from the department office. 1-4 Cr. 1-4 Cr.

BIO 497 Honors Thesis (A). The Honors Research Project culminates in a written Honors Thesis to be presented at Scholar’s Day or another appropriate scientific forum. The thesis must be approved by the Honors Coordinator and College Honors Program designee. Students must have obtained an overall GPA and a GPA in the major of 3.25 or higher in order to register. A minimum grade of B must be obtained to receive departmental honors. Departmental approval to register is required. 1 Cr. 1 Cr. By Arrangement.

BIO 498 Seminar (A). (Prerequisite - Senior status and a major in Biology). Provides an opportunity to research a topic and organize and present a seminar on the topic. Provides experience in scientific communication including oral and written forms. 1 Cr. Every Semester.

BIO 499 Independent Study in Biology (A). (Prerequisite - Instructor's permission). To be defined in consultation with the instructor-sponsor and in accordance with the procedures of the Office of Academic Advisement prior to registration. 1-4 Cr. Every Semester.

Graduate Courses

BIO 504 Developmental Biology (A). Provides a comprehensive one-semester survey of the mechanisms of animal development through lectures and laboratory exercises. Lectures cover historical approaches, contemporary research, and links between evolution and development. Laboratories examine embryonic development of sea urchin, chick, and fruit fly. 4 Cr. Fall.

BIO 507 Advanced Cell Biology (A). Prerequisites: BIO301 and BIO302. An advanced course in cell biology. In depth exploration of cell structure and function and the interrelationship between them including biological membranes, molecular transport, vesicle trafficking and secretion, cell division, cytoskeleton, receptors and cell signaling, extracellular matrix and the organization of tissues. 3 Credits. Fall. 3 Cr. Fall.

BIO 513 How Plants Work (A). Prerequisites: BIO301. Fundamentals of plant growth, development, structure, and response to the environment. Covers all aspects of the mechanisms plant structure and function, especially those features that differentiate plants from other organisms. An integrated lab focuses on key features of plants and their physiology. 3 Cr. Fall. 3 Cr. Fall.

BIO 514 Introduction to Immunology (A). Prerequisite or corequisite: BIO 301. Designed to present the basic principles and concepts of immunology. Students will be able to understand and describe topics such as organization of the immune system, evolution of the immune system, cellular and molecular mechanisms used by the immune system to protect organisms from disease, antibodies and antibody diversity, antigens and antigen-antibody interactions, major histocompatibility complex function, Band T cell development and differentiation, development and survival of lymphocytes, cytokines and their role in regulation of immune responses, the role of the complement system and cell mediated effector response, vaccination, cancer immunology, mechanisms for rejection of transplanted tissue, autoimmunity. 3 Cr. Spring.

BIO 515 Molecular Biology (A). Covers the biosynthesis and function of macromolecules, especially nucleic acids. Includes topics in regulation, molecular virology, DNA mutation and transposition, and DNA repair. 3 Cr. Spring. 3 Cr. Spring.

BIO 520 Mechanisms of Aging (A). Covers mechanisms of aging at the physiological, cellular and molecular levels. Discusses aging as a disease that can be treated and prevented. Studies of aging in model organisms are used to provide insights into mechanisms of human aging. Finally, the evolution of aging mechanisms is discussed. 3 Cr. 3 Cr. Fall.

BIO 522 Animal Physiology and Histology (A). BIO 522 Animal Physiology and Histology(A). Prerequisites: BIO 301 and BIO 302. Essential physiological concepts will be used to further the understanding of how the human body functions. Emphasis is placed on providing an integrated explanation of the histology, regulation and function of key organ systems such as nervous, circulatory, respiratory, gastrointestinal, endocrine and urinary systems. Includes a lab illustrating concepts covered in lecture. Recommended for Biology majors. 4 Cr. Spring. 4 Cr. Spring.

BIO 526 Recombinant DNA (A). Considers theory and techniques in the recombinant DNA field. Includes topics such as cloning vectors, restriction analysis, PCR methods, and expression of cloned genes in both prokaryotes and eukaryotes. Also considers examples and implications of recombinant DNA methodology in plants and agriculture, as well as in medicine, human genetics and disease. 3 Cr. 3 Cr. Fall.

BIO 555 Neurophysiology (A). Introduction to neurophysiology emphasizing cellular and molecular processes occurring at the plasma membrane. Biophysical mechanisms used by neurons to code, process, propagate, and transmit information are examined. Chemical signaling at the neuromuscular junction will be examined in detail. A quantitative description of neuronal function is provided. For example, the effects of ionic gradients on the resting membrane potential of a neuron, the influence on neuronal function, and the effect on the human nervous system is discussed. Current techniques, including electrophysiology and microscopy, will be covered. 3 Cr. Fall.

BIO 566 General Endocrinology (A). ). Explores the relationship between hormone action at the level of the cell and resulting physiological responses such as the regulation of growth, metabolic and reproductive processes. Mechanism of action at cell and molecular levels is emphasized. The pathophysiology of hormone-based disease is used to illustrate concepts. 3 Cr. 3 Cr.

BIO 567 Biochemistry I (A). Covers proteins, lipids, carbohydrates, nucleic acids and other biomolecules with an emphasis on buffers, structures, experimental methods, main energy production pathways and biosynthesis. Requires application of concepts and information to experimental data and deduction of structures, functional roles and mechanisms. 3 Cr. 3 Cr. Fall.

BIO 568 Biochemistry II (A). Emphasizes topics such as metabolic pathways, human nutrition, chromosomes and genes, protein biosynthesis, cell walls, immunoglobulins, muscle contraction, cell motility, membrane transport, and excitable membranes and sensory systems. Investigates the experimental evidence for the structure and functions of biomolecules. 3 Cr. 3 Cr. Spring.

BIO 570 Biochemistry Lab (A). Course fee. Covers biochemical analyses, including preparation, separations and characterization of products from a variety of biological sources. Provides experiments with enzymes and experiments designed to measure inherent changes in the dynamics of living systems. 1 Cr. 1 Cr. Fall.

BIO 575 Cancer Biology (A). Focuses on the biology of cancer commencing with an epidemiological overview of the major human cancers, followed by a discussion of the major causes, progression, identification, prevention, and treatments of those cancers. Emphasizes the molecular mechanisms behind the development of cancer, as well as those being targeted for pharmacological treatments. Includes a discussion of the latest medical advances. 3 Cr.

BIO 580 Genomes and Proteomes in Biomedicine (A). Prerequisites: BIO 301 and BIO 302. Introduces the knowledge of genomics and proteomics in biomedicine, and the bioinformatic approaches for accessing biological databases/programs and analyzing biological data. The topics include the tree of life, various genomes (from viruses, bacteria, fungi, plants to mammals) and their structure and function, genome sequencing technology and genome assembly, genome annotation and functional annotation, human genome and disease, next-generation sequencing technology and data analysis, phylogenetic analysis, protein structure and proteomics, We will mainly use web-based tools/databases and stand-alone programs with graphical user interface. 3 Cr. 3 Cr. Fall.

BIO 583 Introduction to Bioinfomatics (A). Prerequisite: BIO 302. Introduces biologists with computational skills necessary to create and automate tools to analyze biological data. The course is divided into three sub-topics: Linux basics, Python programming, relational databases. A brief review about molecular biology will also be included. 3 Cr. 3 Cr. Spring.

BIO 589 Neurobiology (A). Fosters the understanding that the brain is the basis of our thoughts, feelings, actions and sense of selves. Advances the idea that brain development and synapse formation play a major role in defining who we are. 3 Cr. 3 Cr. Spring.

BIO 595 Topics in Biology (A). To be defined by the instructor in accordance with the specific topic to be covered each semester. Additional information may be obtained from the department office. May be repeated under a different title. 1-4 Cr. 1-4 Cr.

BIO 623 DNA Cloning Laboratory (A). Covers laboratory methods involved in the construction of a genomic DNA library and the creation of recombinant DNA molecules. Standard molecular biology techniques such as plasmid and genomic DNA isolation, bacterial growth and selection techniques, gene isolation and detection, DNA ligation, restriction analysis, bioinformatics, and PCR methods will be utilized. 3 Cr. 3 Cr.

BIO 643 General Microbiology (A). This course aimed at Biology majors provides lectures concerned with the structure, function, diversity, and control of microorganisms, including metabolism, growth and regulation, microbial genetics, disease, immunology, and microbial ecology. Provides lab experiences in techniques of pure culture, cultivation, enumeration, as well as isolation and characterization of diverse microorganisms such as bacteria, fungi, viruses from various sources such as food, environment, and water. 3 Cr. Spring. 3 Cr.

BIO 656 Systems Physiology (A). A laboratory course providing engagement in an authentic research experience examining physiological control mechanisms at the molecular, organ, and whole animal levels. Leadership of student teams will develop essential communication skills. The primary goal is to learn current techniques and approaches to physiological problems, and to develop scientific communication skills that are necessary for success in modern research environments. 3 Cr. Fall.

BIO 692 Graduate Seminar (A). Required of all graduate students. Requires each student to present a seminar on some mutually agreeable topic in science that is critiqued for scientific content, style of presentation, quality of visual aids, impact on the audience, etc. Provides experience in scientific communication including oral and written forms. 1 Cr. Every Semester 1 Cr. Every Semester.

BIO 695 Topics in Biology (A). Current topics to be arranged by instructor in a special field of study. Details reflect student demand, needs and timely topics of interest. 1-3 Cr. 1-3 Cr.

BIO 699 Independent Study (A). Designed individually through consultation between student and instructor to suit the student's needs and interests and the special competence of the instructor. Additional requirements may be imposed by the department. 1-6 Cr. 1-6 Cr. Every Semester.

BIO 702 Independent Research Experience (A). Requires an independent research experience, but permits a more flexible course of study than does a traditional thesis program. Designed for Plan II of the MS program with teachers, medical technologists, lab technicians and other employed persons in mind. First semester Plan I MS students can apply 3 credits towards the degree. 1-6 Cr. Every Semester. 1-6 Cr. Every Semester.

BIO 704 Thesis (A). Provides for an individual investigation of an original problem to be submitted in a format acceptable to satisfy the requirements for the master's thesis as determined by department rules and regulations. 1-6 Cr. Every Semester. 1-6 Cr. Every Semester.

Close mobile navigation